题目内容

【题目】如图,一次函数y=ax+b的图象与反比例函数y= 的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.
(1)求这两个函数的解析式:
(2)求△ADC的面积.

【答案】
(1)解:∵反比例函数y= 的图象过B(4,﹣2)点,

∴k=4×(﹣2)=﹣8,

∴反比例函数的解析式为y=﹣

∵反比例函数y= 的图象过点A(﹣2,m),

∴m=﹣ =4,即A(﹣2,4).

∵一次函数y=ax+b的图象过A(﹣2,4),B(4,﹣2)两点,

解得

∴一次函数的解析式为y=﹣x+2;


(2)解:

∵直线AB:y=﹣x+2交x轴于点C,

∴C(2,0).

∵AD⊥x轴于D,A(﹣2,4),

∴CD=2﹣(﹣2)=4,AD=4,

∴SADC= CDAD= ×4×4=8.


【解析】(1)因为反比例函数过A、B两点,所以可求其解析式和m的值,从而知A点坐标,进而求一次函数解析式;(2)先求出直线AB与与x轴的交点C的坐标,再根据三角形的面积公式求解即可.

练习册系列答案
相关题目

【题目】探究题
问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:

这个图形的面积可以表示成:
(a+b)2或a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
(1)类比解决:
请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
(2)问题提出:如何利用图形几何意义的方法证明:13+23=32
如图2,

A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
请你类比上述推导过程,利用图形的几何意义确定:13+23+33= . (要求写出结论并构造图形写出推证过程).
(3)问题拓广:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= . (直接写出结论即可,不必写出解题过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网