题目内容

【题目】如图,在中,绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且在同一条直线上,则的长为(

A. 3 B. C. 4 D.

【答案】A

【解析】

先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.

∵∠ACB=90°,∠B=60°,
∴∠BAC=30°,
∴AB=2BC=2×1=2,
∵△ABC绕点C顺时针旋转得到△A′B′C′,
∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,
∴△CAA′为等腰三角形,
∴∠CAA′=∠A′=30°,
∵A、B′、A′在同一条直线上,
∴∠A′B′C=∠B′AC+∠B′CA,
∴∠B′CA=60°-30°=30°,
∴B′A=B′C=1,
∴AA′=AB′+A′B′=2+1=3.
故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网