题目内容
【题目】如图,圆E是三角形ABC的外接圆, ∠BAC=45°,AO⊥BC于O,且BO=2,CO=3,分别以BC、AO所在直线建立x轴.
(1)求三角形ABC的外接圆直径;
(2)求过ABC三点的抛物线的解析式;
(3)设P是(2)中抛物线上的一个动点,且三角形AOP为直角三角形,则这样的点P有几个?(只需写出个数,无需解答过程).
【答案】(1);(2)抛物线的解析式为y=-x2+x+6.(3)满足条件的点P有6个.
【解析】试题分析:(1)如图1中,连接EB、EC.由BC=OB+OC=5,∠BEC=2∠BC=90°,可知EB的长,进而得到结论.
(2)如图2中,作EM⊥BC于M,EN⊥OA于N,连接AE,则四边形EMON是矩形.利用勾股定理求出点A、B、C三点坐标,利用待定系数法即可解决问题.
(3)①以OA为直径画圆与抛物线有4个交点,根据直径所对的圆周角是直角,可知这样有4个点P满足条件.②当PA⊥OA时,有一个点P满足条件.③当PO⊥OA时,有两个点P满足条件.
试题解析:解:(1)如图1中,连接EB、EC.
∵BC=OB+OC=5,∠BEC=2∠BC=90°,∴EB=EC=,∴⊙E的直径为.
(2)如图2中,作EM⊥BC于M,EN⊥OA于N,连接AE,则四边形EMON是矩形.
在Rt△EMC中,EM=ON== =,OM=NE=OC﹣CM=,在Rt△EN中,AN===,∴OA=AN+ON=6,∴A(0,6),B(﹣2,0),C(3,0),设抛物线的解析式为y=a(x+2)(x﹣3),把(0,6)的坐标代入得a=﹣1,∴抛物线的解析式为y=﹣x2+x+6.
(3)如图3中,①以OA为直径画圆与抛物线有4个交点,根据直径所对的圆周角是直角,可知这样有4个点P满足条件.
②当PA⊥OA时,有一个点P满足条件.
③当PO⊥OA时,有两个点P满足条件.
所以满足条件的点P有6个.