题目内容

【题目】如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.
(1)求证:AD=AN;
(2)若AB=8,ON=1,求⊙O的半径.

【答案】
(1)解:证明:∵CD⊥AB

∴∠CEB=90°

∴∠C+∠B=90°,

同理∠C+∠CNM=90°

∴∠CNM=∠B,

∵∠CNM=∠AND

∴∠AND=∠B,

∴∠D=∠B,

∴∠AND=∠D,

∴AN=AD;


(2)解:设OE的长为x,连接OA

∵AN=AD,CD⊥AB

∴DE=NE=x+1,

∴OD=OE+ED=x+x+1=2x+1,

∴OA=OD=2x+1,

∴在Rt△OAE中OE2+AE2=OA2

∴x2+42=(2x+1)2

解得x= 或x=﹣3(不合题意,舍去),

∴OA=2x+1=2× +1=

即⊙O的半径为


【解析】(1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;(2)先根据垂径定理求出AE的长,设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论.
【考点精析】本题主要考查了勾股定理的概念和垂径定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网