题目内容

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为F.

(1)求证:DF为⊙O的切线;
(2)若AE=4 ,∠CDF=22.5°,求阴影部分的面积.

【答案】
(1)

证明:连接AD,OD.

∵AB是直径,

∴∠ADB=90°,

∴AD⊥BC,

∵AB=AC,

∴D是BC的中点,

∵O是AB的中点,

∴OD∥AC,

∴∠ODF+∠DFA=180°,

∵DF⊥AC,

∴∠DFA=90°.

∴∠ODF=90°.

∴OD⊥DF

∴DF是⊙O的切线;


(2)

连接OE,

∵∠ADB=∠ADC=90°,∠DFC=∠DFA=90°,

∴∠DAC=∠CDF=22.5°,

∵AB=AC,D是BC中点,

∴∠BAC=2∠DAC=2×22.5°=45°,

∵OA=OE,

∴∠OEA=∠BAC=45°.

∴∠AOE=90°,

∵AE=4

∴OA=OE=4.

S阴影=S扇形AOE﹣SAOE=4π﹣8.


【解析】(1)连接AD、OD,则AD⊥BC,D为BC中点.OD为中位线,则OD∥AC,根据DF⊥AC可得OD⊥DF.得证;(2)连接OE,利用(1)的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.
【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)),还要掌握扇形面积计算公式(在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2))的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网