题目内容
【题目】由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
甲 | 乙 | |
原料成本 | 12 | 8 |
销售单价 | 18 | 12 |
生产提成 | 1 | 0.8 |
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
【答案】(1)甲、乙两种型号的产品分别为10万只,10万只;(2)当y=15时,W最大,最大值为91万元.
【解析】
第一问设未知数,建立等量关系,解一元一次方程;第二问,先根据题目中的条件确定变量的范围,然后再列出利润的表达式,求利润函数在该范围上的最大值即为最大利润.
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
根据题意得:18x+12(20﹣x)=300,
解得:x=10,
则20﹣x=20﹣10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
根据题意得:13y+8.8(20﹣y)≤239,
解得:y≤15,
根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
当y=15时,W最大,最大值为91万元.
【题目】探索规律:下列图案是山西晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,随着基本图案的增加所贴剪纸“○”的总个数也在发生变化.
(1)填写下表:
第个图案 | 1 | 2 | 3 | 4 | …… |
“○”的总个数 | …… |
(2)请你写出第个图案中“○”的总个数与之间的函数关系式.