题目内容
【题目】探索规律:下列图案是山西晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,随着基本图案的增加所贴剪纸“○”的总个数也在发生变化.
(1)填写下表:
第个图案 | 1 | 2 | 3 | 4 | …… |
“○”的总个数 | …… |
(2)请你写出第个图案中“○”的总个数与之间的函数关系式.
【答案】解:(1)5 , 8 ,11,14;(2)
【解析】
(1)第一个图中所贴剪纸“○”的个数为3+2=5;第二个图中所贴剪纸“○”的个数为2×3+2=8;第三个图中所贴剪纸“○”的个数为3×3+2=11;第四个图
(2)根据(1),从而可以得出第n个图中所贴剪纸“○”的个数为(3n+2),则可列出函数;
解:(1)第一个图中所贴剪纸“○”的个数为3+2=5;
第二个图中所贴剪纸“○”的个数为2×3+2=8;
第三个图中所贴剪纸“○”的个数为3×3+2=11;
第四个图中所贴剪纸“○”的个数为3×4+2=14
(2)第n个图中所贴剪纸“○”的个数为(3n+2),则总个数与之间的函数关系式:
.
【题目】由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
甲 | 乙 | |
原料成本 | 12 | 8 |
销售单价 | 18 | 12 |
生产提成 | 1 | 0.8 |
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
【题目】今年春北方严重干旱,某社区人畜饮水紧张,每天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨,从两水厂运水到社区供水点的路程和运费如下表:
到社区供水点的路程(千米) | 运费(元/吨·千米) | |
甲厂 | 20 | 12 |
乙厂 | 14 | 15 |
【1】若某天调运水的总运费为26700元,则从甲、乙两水厂各调运多少吨饮用水?
【2】设从甲厂调运饮用水吨,总运费为W元,试写出W关于与的函数关系式,怎样安排调运方案才能使每天的总运费最省?