题目内容
【题目】在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将平行四边形ABCD的四边DA、AB、BC、CD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.
【答案】见解析
【解析】
根据平行四边形的性质得到AB=C D,∠BCD=∠BAD,根据平角的定义得到∠HCG=∠EAF,根据启动建设性的性质得到EF=CH,同理EH=GF,于是得到结论.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠BCD=∠BAD,
∵∠HCG=180°﹣∠BCD,∠EAF=180°﹣∠BAD,
∴∠HCG=∠EAF,
∵BF=DH,
∴AF=CH,
∴△HCG≌△FAE(SAS),
∴EF=GH,
同理EH=GF,
∴四边形EFGH为平行四边形.
【题目】已知:二次函数中的和满足下表:
] |
(1)请直接写出m的值为_________.
(2)求出这个二次函数的解析式.
(3)当时,则y的取值范围为______________________________.
【题目】为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
课程 | 人数 | 所占百分比 |
声乐 | 14 | |
舞蹈 | 8 | |
书法 | 16 | |
摄影 | ||
合计 |
根据以上信息,解答下列问题:
(1) , .
(2)求出的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.