题目内容
如图, 梯形ABCD中,AD∥BC,对角线的交点为O,CE∥AB交BD的延长线于E,若OB=6,OD=4,则DE=( )
A.12 | B.9 | C.8 | D.5 |
D
在梯形ABCD中,由分析可知BO:OE=AO:OC=OD:OB,
即:OD:OB=BO:OE,
又OB=6,OD=4,即4:6=6:OE,
解得OE=9,又OD=4,所以DE=5,故选D.
即:OD:OB=BO:OE,
又OB=6,OD=4,即4:6=6:OE,
解得OE=9,又OD=4,所以DE=5,故选D.
练习册系列答案
相关题目