题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是( )
A.4B.3C.2D.1
【答案】B
【解析】
先由抛物线与x轴的交点个数判断出结论①,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论②,利用抛物线的对称轴为x=2,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.
解:由图象知,抛物线与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,故①正确,
由图象知,抛物线的对称轴直线为x=2,
∴﹣=2,
∴4a+b=0,故③正确,
由图象知,抛物线开口方向向下,
∴a<0,
∵4a+b=0,
∴b>0,而抛物线与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,故②正确,
由图象知,当x=﹣2时,y<0,
∴4a﹣2b+c<0,故④错误,
即正确的结论有3个,
故选:B.
练习册系列答案
相关题目