题目内容
【题目】如图,抛物线y=ax2+bx经过A(2,0),B(3,-3)两点,抛物线的顶点为C,动点P在直线OB上方的抛物线上,过点P作直线PM∥y轴,交x轴于M,交OB于N,设点P的横坐标为m.
(1)求抛物线的解析式及点C的坐标;
(2)当△PON为等腰三角形时,点N的坐标为 ;当△PMO∽△COB时,点P的坐标为 ;(直接写出结果)
(3)直线PN能否将四边形ABOC分为面积比为1:2的两部分?若能,请求出m的值;若不能,请说明理由.
【答案】(1)抛物线的解析式为y=-x2+2x;C(1,1);(2)N1(1,-1),N2(2,-2),N3(, )P1(, ),P2(, );(3)或
【解析】(1)本题需先根据抛物线y=ax2+bx(a≠0)经过(2,0)B(3,-3)两点,分别求出a、b的值,再代入抛物线y=ax2+bx即可求出它的解析式;
(2)由△PON为等腰三角形的条件,依次写出点N、点P的坐标;
(3)作BD⊥x轴于D,作CE⊥x轴于E,交OB于F,由三角形面积求出OE=EF,然后分几种情况得到m 的值.
解:(1)根据题意,得,解这个方程组得
∴抛物线的解析式为y=-x2+2x
当x=时,y=-x2+2x=1,∴C(1,1)
(2)N1(1,-1),N2(2,-2),N3(, )
P1(, ),P2(, )
(3)作BD⊥x轴于D,作CE⊥x轴于E,交OB于F
则BD=OD=3,CE=OE=1,OC=AC
∴△ODB,△OCE,△AOC均为等腰直角三角形
∴∠AOC=∠AOB=∠OAC=45°
∵PM∥y轴,∴OM⊥PN,∠MNO=∠AOB=45°,∴OM=MN=m,OE=EF=1
①∵
∴当0<m≤1时,不能满足条件
②当1<m≤2时,设PN交AC于Q,则MQ=MA=2-m
由,得,解得
,符合题意
由,得,解得
,符合题意
③当2<m<3时,作AG⊥x轴,交OB于G,
则AG=OA=2,AD=1
∴
∴当2<m<3时,不能满足条件
∴或
“点睛”此题属于二次函数综合题,涉及了待定系数法求函数解析式、一元一次方程的解及三角形的面积,综合性较强,解答本题的难点在第三问,关键是根据题意进行分类求解,难度较大,一般出是试题的压轴题.