题目内容

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为

【答案】(2,4)或(3,4)或(8,4)
【解析】解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况: (i)如答图①所示,PD=OD=5,点P在点D的左侧.

过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE= = =3,
∴OE=OD﹣DE=5﹣3=2,
∴此时点P坐标为(2,4);
(ii)如答图②所示,OP=OD=5.

过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得:OE= = =3,
∴此时点P坐标为(3,4);
(iii)如答图③所示,PD=OD=5,点P在点D的右侧.

过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE= = =3,
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).
所以答案是:(2,4)或(3,4)或(8,4).
【考点精析】关于本题考查的等腰三角形的性质和勾股定理的概念,需要了解等腰三角形的两个底角相等(简称:等边对等角);直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网