题目内容
【题目】26.如图,在四边形ABCD中,∠DAB=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G,设AD=a,BC=b.
(1)求CD的长度(用a,b表示);
(2)求EG的长度(用a,b表示);
(3)试判断EG与FG是否相等,并说明理由.
【答案】
(1)解:∵AB为半圆的直径,∠DAB=∠ABC=90°,
∴DA、BC为半圆O的切线,
又∵CD与以AB为直径的半圆相切于点E,
∴DE=DA=a,CE=CB=b,
∴CD=a+b
(2)解:∵EF⊥AB,
∴EG∥BC,
∴EG:BC=DE:DC,即EG:b=a:(a+b),
∴EG=
(3)解:EG与FG相等.理由如下:
∵EG∥BC,
∴ = ,即 = ①,
又∵GF∥AD,
∴ = ,即 = ②,
①+②得 + = + =1,
而EG= ,
∴ + =1,
∴FG= ,
∴EG=FG.
【解析】(1)由AB为半圆的直径,∠DAB=∠ABC=90°,根据切线的判定方法得到DA、BC为半圆O的切线,而CD与以AB为直径的半圆相切于点E,根据切线长定理得到DE=DA=a,CE=CB=b,即有CD=a+b;(2)易得EG∥BC,根据平行线分线段成比例定理有EG:BC=DE:DC,即EG:b=a:(a+b),即可表示出EG= ;(3)由EG∥BC,根据平行线分线段成比例定理 = ,即 = ,由GF∥AD得到 = ,即 = ,则 + = + =1,然后把EG= 代入计算即可得到FG= ,即可得到EG=FG.
【题目】下框中是小明对一道题目的解答以及老师的批改.
题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2? |
我的结果也正确!
(1)小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?
(2)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样…
(3)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.