题目内容

如图,圆O的直径AB的长为10,弦AC长为6,ÐACB的平分线交圆O于D,则CD长为
 
解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.

∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:设AF=BG=X,BC=8,AC=6,得8-X=6+X,解X=1)
∴CF=7,
∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
∴CD=
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网