题目内容

【题目】如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1, =1.4, =1.7)

【答案】
(1)证明:∵CD∥AB,

∴∠CDA=∠BAD,

又∵OA=OD,

∴∠ADO=∠BAD,

∴∠ADO=∠CDA,

∴DA平分∠CDO


(2)解:如图:

连接BD,

∵AB是直径,

∴∠ADB=90°,

∵AC=CD,

∴∠CAD=∠CDA,

又∵CD∥AB,

∴∠CDA=∠BAD,

∴∠CDA=∠BAD=∠CAD,

= =

又∵∠AOB=180°,

∴∠DOB=60°,

∵OD=OB,

∴△DOB是等边三角形,

∴BD=OB= AB=6,

=

∴AC=BD=6,

∵BE切⊙O于B,

∴BE⊥AB,

∴∠DBE=∠ABE﹣∠ABD=30°,

∵CD∥AB,

∴BE⊥CE,

∴DE= BD=3,BE=BD×cos∠DBE=6× =3

的长= =2π,

∴图中阴影部分周长之和为 =4π+9+3 =4×3.1+9+3×1.7=26.5.


【解析】(1)只要证明∠CDA=∠DAO,∠DAO=∠ADO即可.(2)首先证明 = = ,再证明∠DOB=60°得△BOD是等边三角形,由此即可解决问题.本题考查切线的性质、平行线的性质、等边三角形的判定和性质、弧长公式等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网