题目内容
【题目】已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当 时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?
【答案】
(1)
解:①C(1,2),Q(2,0)
②由题意得:P(t,0),C(t,﹣t+3),Q(3﹣t,0).
分两种情况讨论:
情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,
∴CQ⊥OA,
∵CP⊥OA,
∴点P与点Q重合,OQ=OP,
即3﹣t=t,
∴t=1.5;
情形二:当△ACQ∽△AOB时,∠ACQ=∠AOB=90°,
∵OA=OB=3,
∴△AOB是等腰直角三角形,
∴△ACQ也是等腰直角三角形.
∵CP⊥OA,
∴AQ=2CP,
即t=2(﹣t+3),
∴t=2.
∴满足条件的t的值是1.5秒或2秒
(2)
①由题意得:C(t,﹣ ),
∴以C为顶点的抛物线解析式是y= ,
由 ,
即(x﹣t)2+ (x﹣t)=0,
∴(x﹣t)(x﹣t+ )=0,
解得 .
过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°,
∵DE∥OA,
∴∠EDC=∠OAB,
∴△DEC∽△AOB,
∴ ,
∵AO=4,AB=5,DE= ,
∴CD= ,
②∵ ,CD边上的高= ,
∴ ,
∴S△COD为定值.
要使OC边上的高h的值最大,只要OC最短,因为当OC⊥AB时OC最短,
此时OC的长为 ,∠BCO=90°,
∵∠AOB=90°,
∴∠COP=90°﹣∠BOC=∠OBA,
又∵CP⊥OA,
∴Rt△PCO∽Rt△OAB,
∴ ,OP= ,
即t= ,
∴当t为 秒时,h的值最大.
【解析】(1)①由题意可得;②由题意得到关于t的坐标.按照两种情形解答,从而得到答案.(2)①以点C为顶点的抛物线,解得关于t的根,又由过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°,又由△DEC∽△AOB从而解得.②先求得三角形COD的面积为定值,又由Rt△PCO∽Rt△OAB,在线段比例中t为 时,h最大.