题目内容
如图,AB、CD是⊙O的直径,弦AE⊥CD于点F,延长BE、AD交于点G.
(1)求证:CD∥BG;
(2)若BE=4,OF=
DF;
①求证:DF=BE.
②求tanG的值.
(1)求证:CD∥BG;
(2)若BE=4,OF=
1 |
2 |
①求证:DF=BE.
②求tanG的值.
(1)证明:∵AB是⊙O的直径,
∴AE⊥BE,
∵AE⊥CD,
∴CD∥BG.
(2)证明:①∵直径CD⊥AE于点F,
∴AF=FE,
又∵AO=BO,
∴OF=
BE=
×4=2,
∵OF=
DF,
∴DF=BE=4.
②∵AO=OD=OF+DF=6,
∴AF=
=
=4
,
∵CD∥BG,
∴tanG=tan∠ADF=
=
=
.
∴AE⊥BE,
∵AE⊥CD,
∴CD∥BG.
(2)证明:①∵直径CD⊥AE于点F,
∴AF=FE,
又∵AO=BO,
∴OF=
1 |
2 |
1 |
2 |
∵OF=
1 |
2 |
∴DF=BE=4.
②∵AO=OD=OF+DF=6,
∴AF=
AO2-OF2 |
62-22 |
2 |
∵CD∥BG,
∴tanG=tan∠ADF=
AF |
FD |
4
| ||
4 |
2 |
练习册系列答案
相关题目