题目内容

【题目】已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.

【答案】
(1)证明:∵四边形ABCD是菱形,

∴AO=CO,AD∥BC,

∴∠OAE=∠OCF,

在△AOE和△COF中,

∴△AOE≌△COF(ASA);


(2)解:∵∠BAD=60°,

∴∠DAO= ∠BAD= ×60°=30°,

∵∠EOD=30°,

∴∠AOE=90°﹣30°=60°,

∴∠AEF=180°﹣∠DAO﹣∠AOE=180°﹣30°﹣60°=90°,

∵菱形的边长为2,∠DAO=30°,

∴OD= AD= ×2=1,

∴AO= = =

∴AE=CF= × =

∵菱形的边长为2,∠BAD=60°,

∴高EF=2× =

在Rt△CEF中,CE= = =


【解析】(1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE和△COF全等;(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网