题目内容
【题目】已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.
【答案】
(1)证明:∵四边形ABCD是菱形,
∴AO=CO,AD∥BC,
∴∠OAE=∠OCF,
在△AOE和△COF中, ,
∴△AOE≌△COF(ASA);
(2)解:∵∠BAD=60°,
∴∠DAO= ∠BAD= ×60°=30°,
∵∠EOD=30°,
∴∠AOE=90°﹣30°=60°,
∴∠AEF=180°﹣∠DAO﹣∠AOE=180°﹣30°﹣60°=90°,
∵菱形的边长为2,∠DAO=30°,
∴OD= AD= ×2=1,
∴AO= = = ,
∴AE=CF= × = ,
∵菱形的边长为2,∠BAD=60°,
∴高EF=2× = ,
在Rt△CEF中,CE= = = .
【解析】(1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE和△COF全等;(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解.
练习册系列答案
相关题目