题目内容
【题目】已知直线y=﹣ x+1与x轴、y轴分别交于B点、A点,直线y=2x﹣2与x轴、y轴分别交于D点、E点,两条直线交于点C;
(1)求A、B、C、D、E的坐标;
(2)请用相似三角形的相关知识证明:AB⊥DE;
(3)求△CBD的外接圆的半径.
【答案】
(1)
解:在y=﹣ x+1中,令x=0可得y=1,令y=0可求得x=2,
∴A(0,1),B(2,0),
在y=2x﹣2中,令x=0可得y=﹣2,令y=0可求得x=1,
∴D(1,0),E(0,﹣2),
联立两直线解析式可得 ,解得 ,
∴C( , );
(2)
解:由(1)可知OA=1,OB=2,OD=1,OE=2,
∴ = ,且∠AOD=∠DOE,
∴△AOB∽△DOE,
∴∠DEO=∠ABO,且∠ODE=∠CDB,
∴∠DCB=∠DOE=90°,
∴AB⊥DE;
(3)
解:由(2)可知∠DCB=90°,
∴BD为△CBD外接圆的直径,
∵OB=2,OD=1,
∴BD=1,
∴△CBD外接圆的半径为 .
【解析】(1)由两直线的解析式可求得A、B、D、E的坐标,再联立两直线解析式可求得C点坐标;(2)利用A、B、D、E的坐标可求得OA、OB、OD、OE的长,则可证得△AOB∽△DOE,可求得∠OED=∠OBA,则可求得∠DCB=90°,可证得结论;(3)由(2)的结论,结合圆周角定理可知BD即为△CBD的外接圆的直径,由B、D的坐标可求得BD的长,则可求得半径.
【考点精析】本题主要考查了一次函数的图象和性质和圆周角定理的相关知识点,需要掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.
【题目】今年十一黄金周期间,九寨沟7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数变化/万人 | +0.5 | +0.7 | +0.8 | +0.2 |
(1)、请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?(5分)
(2)、如果9月30日旅游人数为2.5万人,平均每人消费500元,请问风景区在此7天内总收入为多少万元?
【题目】为节约用水、保护水资源,本市制定了一套节约用水的管理措施,其中规定每月用水量超过m(吨)时,超过部分每吨加收环境保护费 元.下图反映了每月收取的水费y(元)与每月用水量x(吨)之间的函数关系的图象.按上述方案,一家酒店四、五两月用水量及缴费情况如表:
月份 | 用水量x(吨) | 水费y(元) |
四月 | 35 | 59.5 |
五月 | 80 | 151 |
(1)求出m的值;
(2)写出y与x之间的函数关系式,并指出自变量x的取值范围.