题目内容
.如图,在中,为的内切圆,点斜边的中点,则 .
2.
试题分析:过O点作OE⊥AB OF⊥AC OG⊥BC,
∴∠OGC=∠OFC=∠OED=90°,
∵∠C="90°,AC=6" BC=8,
∴AB=10
∵⊙O为△ABC的内切圆,
∴AF="AE,CF=CG" (切线长相等)
∵∠C=90°,
∴四边形OFCG是矩形,
∵OG=OF,
∴四边形OFCG是正方形,
设OF=x,则CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,
∴6-x+8-x=10,
∴OF=2,
∴AE=4,
∵点D是斜边AB的中点,
∴AD=5,
∴DE=AD-AE=1,
∴tan∠ODA= =2.
练习册系列答案
相关题目