题目内容

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.

(1)求抛物线的解析式;
(2)填空:
①用含m的式子表示点C,D的坐标:
C(  ,   ),D(  );
②当m=   时,△ACD的周长最小;
(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.

【答案】
(1)

解:(1)依题意,得,解得

∴y=x2x


(2)m;;2m;0;1
(3)

依题意,得B(m,0)

在RT△OBC中,OC2=OB2+BC2=m2+=m2

∴OC=m 又∵O,D关于直线PC对称,

∴CD=OC=m

在RT△AOE中,OA===

∴AC=OA﹣OC=m

在RT△ADE中,AD2=AE2+DE2=12+(2﹣2m)2=4m2﹣8m+5

分三种情况讨论:

①若AC=CD,即m=m,解得m=1,∴P(1,

②若AC=AD,则有AC2=AD2,即5﹣5m+m2=4m2﹣8m+5

解得m1=0,m2=.∵0<m<2,∴m=,∴P(

③若DA=DC,则有DA2=DC2,即4m2﹣8m+5=m2

解得m1=,m2=2,∵,0<m<2,∴m=,∴P(

综上所述,当△ACD为等腰三角形是,点P的坐标分别为P1(1,),P2),P3).


【解析】(1)根据抛物线对称轴公式和代入法可得关于a,b的方程组,解方程组可得抛物线的解析式;
(2)①设OA所在的直线解析式为y=kx,将点A(2,1)代入求得OA所在的解析式为y=x,因为PC⊥x轴,所以C得横坐标与P的横坐标相同,为m,令x=m,则y=m,所以得出点C(m,m),又点O、D关于直线PB的对称,所以由中点坐标公式可得点D的横坐标为2m,则点D的坐标为(2m,0);
②因为O与D关于直线PB的对称,所以PB垂直平分OD,则CO=CD,因为,△ACD的周长=AC+CD+AD=AC+CO+AD=AO,OA===,所以当AD最小时,△ACD的周长最小;根据垂线段最短,可知此时点D与E重合,其横坐标为2,故m=1.
(3)由中垂线得出CD=OC,再将OC、AC、AD用m表示,然后分情况讨论分别得到关于m的方程,解得m,再根据已知条件选取复合体艺的点P坐标即可.
【考点精析】通过灵活运用二次函数的性质,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网