题目内容
【题目】二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )
A.ac+1=b
B.ab+1=c
C.bc+1=a
D.以上都不是
【答案】A
【解析】解:当x=0时,y=ax2+bx+c=c,则C(0,c)(c>0),
∵OA=OC,
∴A(﹣c,0),
∴a(﹣c)2+b(﹣c)+c=0,
∴ac﹣b+1=0,
即ac+1=b.
故选A.
【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
练习册系列答案
相关题目