题目内容

【题目】阅读材料,回答问题:

小聪学完了锐角三角函数的相关知识后,通过研究发现:如图1,在RtABC中,如果∠C=90°,=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到在含30°角的直角三角形中,存在着==的关系.

这个关系对于一般三角形还适用吗?为此他做了如下的探究:

(1)如图2,在RABC中,∠C=90°,BC=a,AC=b,AB=C,请判断此时==的关系是否成立?答:   

(2)完成上述探究后,他又想对于任意的锐角ABC,上述关系还成立吗?因此他又继续进行了如下的探究:

如图3,在锐角ABC中,BC=a,AC=b,AB=c,请判断此时 ==的关系是否成立?并证明你的判断.(提示:过点CCDABD,过点AAHBC,再结合定义或其它方法证明).

【答案】(1)成立;(2)见解析

【解析】

(1)因为=c,=c,=c,推出“==”成立,

(2)作CD⊥ABD.在Rt△ADCRt△BDC中,∠ADC=∠BDC=90°,可得sinA=,sinB=,推出==,可得=,同理,作AH⊥BCH,可证=,即可解决问题.

(1)=c, =c, =c,

==成立,

故答案为成立.

(2)作CDABD.

∵在RtADCRtBDC中,∠ADC=BDC=90°,

sinA=,sinB=

==

=

同理,作AHBCH,可证=

==

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网