题目内容
【题目】在矩形ABCD中,点P在AD上,AB=3,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.
(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;
(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:在这个过程中,设CF=m.试解答:①用含m的代数式表示四边形BEPF的面积,并直接写出m的取值范围;②从开始到停止,求线段EF的中点所经过的路线长.
【答案】(1);(2)①S四边形BEPF=15﹣m,(0<m≤9);②.
【解析】
(1)先求得△ABP∽△DPC.通过比例求出此时PC的长
(2)过点F作FG⊥AD于点G.△APE∽△GFP,得,在Rt△EPF中,tan∠PEF=即tan∠PEF的值不变.
∴∠PEF的大小不变.
练习册系列答案
相关题目
【题目】某校对九年级(1)班全体学生进行体育测试,测试成绩分为优秀、良好、合格和不合格四个等级,根据测试成绩绘制的不完整统计图表如下:
九年级(1)班体育成绩频数分布表:
等级 | 分值 | 频数 |
优秀 | 90﹣100分 | |
良好 | 75﹣89分 | 13 |
合格 | 60﹣74分 | |
不合格 | 0﹣59分 | 9 |
根据统计图表给出的信息,解答下列问题:
(1)九年级(1)班共有多少名学生?
(2)体育成绩为优秀的频数是 ,合格的频数为 ;
(3)若对该班体育成绩达到优秀程度的3个男生和2个女生中随机抽取2人参加学校体育竞赛,恰好抽到1个男生和1个女生的概率是 .