题目内容

【题目】如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.

【答案】
(1)证明:连接OC,

∵AC平分∠DAB,

∴∠DAC=∠CAB,

∵OC=OA,

∴∠OAC=∠OCA,

∴∠DAC=∠OCA,

∴OC∥AD,

∵AD⊥CD,

∴OC⊥CD,

∵OC为⊙O半径,

∴CD是⊙O的切线


(2)解:在Rt△ADE中,由勾股定理得:AE= =15,

∵OC∥AD,

∴△ECO∽△EDA,

=

=

解得:OC=

∴BE=AE﹣2OC=15﹣2× =

答:BE的长是


【解析】(1)连接OC,推出∠DAC=∠CAB,∠OAC=∠OCA,求出∠DAC=∠OCA,得出OC∥AD,推出OC⊥DC,根据切线的判定判断即可;(2)根据勾股定理求出AE,根据△ECO∽△EDA,得出比例式,求出圆的半径,即可求出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网