题目内容
【题目】点 O 是直线 AB上一点,∠COD 是直角,OE平分∠BOC.
(1)①如图1,若∠DOE=25°,求∠AOC 的度数;
②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);
(2)将图 1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.
【答案】(1)①∠AOC=50°;②∠AOC=2α;(2)∠DOE=∠AOC,理由详见解析.
【解析】
(1)①首先求得∠COE的度数,然后根据角平分线的定义求得∠COB的度数,再根据∠AOC=180°﹣∠BOC即可求解;
②解法与①相同,把①中的25°改成α即可;
(2)把∠AOC的度数作为已知量,求得∠BOC的度数,然后根据角的平分线的定义求得∠COE的度数,再根据∠DOE=∠COD﹣∠COE求得∠DOE,即可解决.
(1)①∵∠COD=90°,∠DOE=25°,
∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,
又∵OE平分∠BOC,
∴∠BOC=2∠COE=130°,
∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;
②∵∠COD=90°,∠DOE=α,
∴∠COE=∠COD﹣∠DOE=90°﹣α,
又∵OE平分∠BOC,
∴∠BOC=2∠COE=180°﹣2α,
∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;
(2)∠DOE=∠AOC,理由如下:
∵∠BOC=180°﹣∠AOC,
又∵OE平分∠BOC
∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,
又∵∠COD=90°,
∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.
练习册系列答案
相关题目