题目内容
【题目】已知二次函数y=(x-m)2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如下图,当m=2时,该抛物线与轴交于点C,顶点为D,求C、D 两点的坐标;
【答案】(1)y=x2+2x或y=x2-2x;(2)C(0,3),D(2,-1)
【解析】
(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可得二次函数的解析式;
(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可.
解:(1)∵二次函数的图象经过坐标原点O(0,0),
∴代入二次函数y=(x-m)2-1得m2-1=0,得m=±1,
所以二次函数的解析式为y=x2+2x或y=x2-2x;
(2)当m=2时,y=(x-2)2-1,
∴D(2,-1),
又当x=0时,y=3,
∴C(0,3)
练习册系列答案
相关题目