题目内容
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4, 1),B(-1,3),C(-1,1)
(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△;平移△ABC,若A对应的点坐标为(-4,-5),画出△;
(2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;
(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;
【答案】(1)见解析(2)(-1,-2)(3)P(-,0).
【解析】
(1)根据旋转变换与平移变换的定义作出变换后的对应点,再顺次连接即可;
(2)结合对应点的位置,根据旋转变换的性质可得旋转中心;
(3)作出点A关于x轴的对称点A’,再连接A’B,与x轴的交点即为P点.
(1)如图所示,△,△即为所求;
(2)如图所示,点Q即为所求,坐标为(-1,-2)
(3)如图所示,P即为所求,
设A’B的解析式为y=kx+b,
将A’(-4,-1),B(-1,3)代入得
解得
∴A’B的解析式为y=x+,
当y=0,时,x+=0,解得x=-
∴P(-,0).
练习册系列答案
相关题目