题目内容
【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC绕点C旋转.
(1)当△DEC统点C旋转到点D恰好落在AB边上时,如图2.
①当∠B=∠E=30°时,此时旋转角的大小为 ;
②当∠B=∠E=α时,此时旋转角的大小为 (用含a的式子表示).
(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.
【答案】(1)①60°;②2α;(2)小杨同学猜想是正确的.证明见解析.
【解析】
(1)①证明△ADC是等边三角形即可.
②如图2中,作CH⊥AD于H.想办法证明∠ACD=2∠B即可解决问题.
(2)小扬同学猜想是正确的.过B作BN⊥CD于N,过E作EM⊥AC于M,如图3,想办法证明△CBN≌△CEM(AAS)即可解决问题.
解:(1)①∵∠B=30°,∠ACB=90°,
∴∠CAD=90°﹣30°=60°.
∵CA=CD,
∴△ACD是等边三角形,
∴∠ACD=60°,
∴旋转角为60°.
故答案为:60°.
②如图2中,作CH⊥AD于H.
∵CA=CD,CH⊥AD,
∴∠ACH=∠DCH.
∵∠ACH+∠CAB=90°,∠CAB+∠B=90°,
∴∠ACH=∠B,
∴∠ACD=2∠ACH=2∠B=2α,
∴旋转角为2α.
故答案为:2α.
(2)小杨同学猜想是正确的.证明如下:
过B作BN⊥CD于N,过E作EM⊥AC于M,如图3,
∵∠ACB=∠DCE=90°,
∴∠1+∠2=90°,∠3+∠2=90°,
∴∠1=∠3.
∵BN⊥CD于N,EM⊥AC于M,
∴∠BNC=∠EMC=90°.
∵△ACB≌△DCE,
∴BC=EC,
在△CBN和△CEM中,
∠BNC=∠EMC,∠1=∠3,BC=EC,
∴△CBN≌△CEM(AAS),
∴BN=EM.
∵S△BDCCDBN,S△ACEACEM.
∵CD=AC,
∴S△BDC=S△ACE.