题目内容
【题目】已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.
(1)求∠EDA的度数;
(2)AB=10,AC=8,DE=3,求S△ABC.
【答案】(1)60°;(2)27.
【解析】
(1)先求出∠BAC= 60°,再用AD是△ABC的角平分线求出∠BAD,再根据垂直,即可求解;
(2)过D作DF⊥AC于F,三角形ABC的面积为三角形ABD和三角形ACD的和即可求解.
解:(1)∵∠B=50°,∠C=70°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,
∵AD是△ABC的角平分线,
∴∠BAD=∠BAC=×60°=30°,
∵DE⊥AB,
∴∠DEA=90°,
∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;
(2)如图,过D作DF⊥AC于F,
∵AD是△ABC的角平分线,DE⊥AB,
∴DF=DE=3,
又∵AB=10,AC=8,
∴S△ABC=×AB×DE+×AC×DF=×10×3+×8×3=27.
练习册系列答案
相关题目