题目内容
【题目】如图,已知的平分线与的垂直平分线相交于点,,,垂足分别为,,,,则的长为__________.
【答案】
【解析】
连接DC、DB,根据中垂线的性质即可得到DB=DC,根据角平分线的性质即可得到DE=DF,从而即可证出△DEB≌DFC,从而得到BE=CF,再证△AED≌△AFD,即可得到AE=AF,最后根据,即可求出BE.
解:如图所示,连接DC、DB,
∵DG垂直平分BC
∴DB=DC
∵AD平分,,
∴DE=DF,∠DEB=∠DFC=90°
在Rt△DEB和Rt△DFC中,
∴Rt△DEB≌Rt△DFC
∴BE=CF
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD
∴AE=AF
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE
∵,
∴BE=(AB-AC)=1.5.
故答案为:1.5.
练习册系列答案
相关题目
【题目】对于抛物线.
(1)它与x轴交点的坐标为 ,与y轴交点的坐标为 ,顶点坐标为 ;
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是 .