题目内容
【题目】在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于_____.
【答案】20°.
【解析】
延长AB到F使BF=AD,连接CF,如图,先判断△ADE为等边三角形得到AD=DE=AE,∠ADE=60°,再利用∠CDB=2∠CDE得到∠CDE=40°,∠CDB=80°,接着证明AF=AC,从而可判断△AFC为等边三角形,则有CF=AC,∠F=60°,然后证明△ACD≌△FCB 得到CB=CD,最后根据等腰三角形的性质和三角形内角和计算∠DCB的度数.
延长AB到F使BF=AD,连接CF,如图,
∵∠CAD=60°,∠AED=60°,
∴△ADE为等边三角形,
∴AD=DE=AE,∠ADE=60°,
∴∠BDE=180°﹣∠ADE=120°,
∵∠CDB=2∠CDE,
∴3∠CDE=120°,解得∠CDE=40°,
∴∠CDB=2∠CDE=80°,
∵BF=AD,
∴BF=DE,
∵DE+BD=CE,
∴BF+BD=CE,即DF=CE,
∵AF=AD+DF,AC=AE+CE,
∴AF=AC,
而∠BAC=60°,
∴△AFC为等边三角形,
∴CF=AC,∠F=60°,
在△ACD和△FCB 中
,
∴△ACD≌△FCB(SAS),
∴CB=CD,
∴∠CBD=∠CDB=80°,
∴∠DCB=180﹣(∠CBD+∠CDB)=20°.
【题目】某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
根据上表解答下列问题:
(1)完成下表:
姓名 | 极差(分) | 平均成绩(分) | 中位数(分) | 众数(分) | 方差 |
小王 | 40 | 80 | 75 | 75 | 190 |
小李 |
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.