题目内容
【题目】某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
根据上表解答下列问题:
(1)完成下表:
姓名 | 极差(分) | 平均成绩(分) | 中位数(分) | 众数(分) | 方差 |
小王 | 40 | 80 | 75 | 75 | 190 |
小李 |
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
【答案】(1)见解析;(2)成绩比较稳定的是小李,小王的优秀率为40%,小李的优秀率为80%;(3)见解析.
【解析】
(1)根据平均数、中位数、众数、方差、极差的概念求得相关的数;
(2)方差反映数据的离散程度,所以方差越小越稳定,应此小李的成绩稳定;小王的优秀率=,小李的优秀率=;
(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.
(1)小李的平均分==80,中位数=80,众数=80,方差==40,极差=最大的数﹣最小的数=90﹣70=20;
(2)在这五次考试中,成绩比较稳定的是小李,小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;
(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分,成绩比较稳定,获奖机会大.
方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.
(注:答案不唯一,考生可任选其中一人,只要分析合理,都给满分.若选两人都去参加,不合题意不给分).
【题目】为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
档次 | 第一档 | 第二档 | 第三档 |
每月用电量x(度) | 0<x≤140 |
(2)小明家某月用电120度,需交电费 元
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.