题目内容
【题目】如图,二次函数的图像与
轴交于
两点,与
轴交于点
,直线l是抛物线的对称轴,
是抛物线的顶点.
(1)求抛物线的解析式及顶点的坐标;
(2)如图,连接,线段
上的点
关于直线
的对称点
恰好在线段
上,求点
的坐标.
【答案】(1) ,(-1,4);(2)
【解析】
(1)将点、
代入
即可求得抛物线的解析式,继而求得顶点
的坐标;
(2)利用待定系数法求得直线的解析式,设点
,利用对称性得到点
的坐标为
,将
代入直线
的解析式,即可求解.
(1)把点,
代入
,
得,
解之得.
∴抛物线的解析式为.
当时,
,
∴顶点的坐标为(-1,4);
(2)设直线的解析式为
,
把,
代入得,
,
解得.
∴直线的解析式为
.
设点F的坐标为,
∵抛物线的对称轴为
,
∴点的坐标为
,
把代入
得:
,
解得:,
∴点F的坐标为.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】4月23日为世界阅读日,为响应党中央“倡导全民阅读,建设书香会”的号召,某校团委组织了一次全校学生参加的“读书活动”大赛为了解本次赛的成绩,校团委随机抽取了部分学生的成绩(成绩取整数,总分100分)作为本进行统计,制成如下不完整的统计图表(频数频率分布表和频数分布直方图):
成绩 | 频数(人) | 频率 |
10 | 0.05 | |
30 | 0.15 | |
40 | ||
0.35 | ||
50 | 0.25 |
根据所给信息,解答下列问题:
(1)抽取的样本容量是 ; ,
;
(2)补全频数分布直方图;这200名学生成绩的中位数会落在 分数段;
(3)全校有1200名学生参加比赛,若得分为90分及以上为优秀,请你估计全校参加比赛成绩优秀的学生人数.
【题目】某体育老师随机抽取了九年级甲、乙两班部分学生进行一分钟跳绳的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分组 | 频数 | 频率 |
第一组(0≤x<120) | 3 | 0.15 |
第二组(120≤x<160) | 8 | a |
第三组(160≤x<200) | 7 | 0.35 |
第四组(200≤x<240) | b | 0.1 |
(1)频数分布表中a=____,b=_____,并将统计图补充完整;
(2)如果该校九年级共有学生360人,估计跳绳能够一分钟完成160或160次以上的学生有多少人?
(3)已知第一组中有两个甲班学生,第四组中只有一个甲班学生,老师随机从这两个组中各选一名学生谈测试体会,则所选两人正好都是甲班学生的概率是多少?