题目内容
【题目】如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离( 取1.73,结果精确到0.1千米)
【答案】解:过B作BE⊥AD于E, ∵∠NAD=60°,∠ABD=75°,
∴∠ADB=45°,
∵AB=6× =4,
∴AE=2.BE=2 ,
∴DE=BE=2 ,
∴AD=2+2 ,
∵∠C=90,∠CAD=30°,
∴CD= AD=1+ ≈2.7千米.
【解析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据直角三角形的性质得到AE=2.BE=2 ,求得AD=2+2 ,即可得到结论.
练习册系列答案
相关题目
【题目】甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)
数与代数 | 空间与图形 | 统计与概率 | 综合与实践 | |
学生甲 | 90 | 93 | 89 | 90 |
学生乙 | 94 | 92 | 94 | 86 |
(1)分别计算甲、乙成绩的中位数;
(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?