题目内容
【题目】已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是( )
A.﹣5≤s≤﹣
B.﹣6<s≤﹣
C.﹣6≤s≤﹣
D.﹣7<s≤﹣
【答案】B
【解析】解:∵直线y=ax+b(a≠0)不经过第一象限,
∴a<0,b≤0,
∵直线y=ax+b(a≠0)过点(2,﹣3),
∴2a+b=﹣3,
∴a= ,b=﹣2a﹣3,
∴s=a+2b= +2b= b﹣ ≤﹣ ,
s=a+2b=a+2(﹣2a﹣3)=﹣3a﹣6>﹣6,
即s的取值范围是﹣6<s≤﹣ .
故选:B.
根据直线y=ax+b(a≠0)不经过第一象限,可知a<0,b≤0,直线y=ax+b(a≠0)过点(2,﹣3),可知2a+b=﹣3,依此即可得到s的取值范围.
【题目】已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:
x | … | ﹣1 | 0 | 2 | 4 | … |
y1 | … | 0 | 1 | 3 | 5 | … |
x | … | ﹣1 | 1 | 3 | 4 | … |
y2 | … | 0 | ﹣4 | 0 | 5 | … |
当y2>y1时,自变量x的取值范围是( )
A.x<﹣1
B.x>4
C.﹣1<x<4
D.x<﹣1或x>4
【题目】为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.
“通话时长” | 0<x≤3 | 3<x≤6 | 6<x≤9 | 9<x≤12 | 12<x≤15 | 15<x≤18 |
次数 | 36 | a | 8 | 12 | 8 | 12 |
根据表、图提供的信息,解答下面的问题:
(1)a= , 样本容量是;
(2)求样本中“通话时长”不超过9分钟的频率:;
(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.
【题目】某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别 | A | B | C | D |
频数 | 30 | 40 | 24 | b |
频率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= , b=;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?