题目内容
【题目】已知二次函数y=x2﹣2x﹣3.
(1)将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)与y轴的交点坐标是 , 与x轴的交点坐标是;
(3)在坐标系中利用描点法画出此抛物线.
x | … | … | |||||
y | … | … |
(4)不等式x2﹣2x﹣3>0的解集是 .
【答案】
(1)解:y=x2﹣2x﹣3=x2﹣2x+1﹣3﹣1=(x﹣1)2﹣4,即y=(x﹣1)2﹣4
(2)(0,﹣3);(3,0)(﹣1,0)
(3)解:列表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
图象如图所示:
(4)x<﹣1或x>3
【解析】解:(2)令x=0,则y=﹣3,即该抛物线与y轴的交点坐标是 (0,﹣3),
又y=x2﹣2x﹣3=(x﹣3)(x+1),
所以该抛物线与x轴的交点坐标是(3,0)(﹣1,0).
故答案是:(0,﹣3);(3,0)(﹣1,0);(4)如图所示,不等式x2﹣2x﹣3>0的解集是x<﹣1或x>3.
故答案是:x<﹣1或x>3.
【考点精析】本题主要考查了二次函数的图象的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.
练习册系列答案
相关题目