题目内容
【题目】如图,点C是⊙O的直径AB延长线上一点,过⊙O上一点D作DF⊥AB于F,交⊙O于点E,点M是BE的中点,AB=4,∠E=∠C=30°.
(1)求证:CD是⊙O的切线;
(2)求DM的长.
【答案】(1)见解析;(2)
【解析】
(1)连接OD,由圆周角定理得出∠DOC=2∠E=60°,∠ODC=180°﹣(∠DOC+∠C)=90°,即可得出结论;
(2)连接OE、OM,证明∠DOC=∠COE=60°,由OB=OE,点M是BE的中点,得出∠BOM=∠COE=30°,OM⊥BE,则∠DOM=∠DOC+∠BOM=90°,OM=OBcos∠BOM=,由勾股定理得DM==.
(1)证明:连接OD,如图1所示:
∵∠E=30°,
∴∠DOC=2∠E=60°,
∴∠DOC+∠C=60°+30°=90°,
∴∠ODC=180°﹣(∠DOC+∠C)=180°﹣90°=90°,即OD⊥CD,
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)解:连接OE、OM,如图2所示:
∵⊙O的直径AB,AB=4,
∴OB=OD=2,
∵OD=OE,DF⊥AB,
∴∠DOC=∠COE=60°,
∵OB=OE,点M是BE的中点,
∴∠BOM=∠COE=30°,OM⊥BE,
∴∠DOM=∠DOC+∠BOM=60°+30°=90°,
∵在Rt△OMB中,∠OMB=90°,
∴OM=OBcos∠BOM=2cos30°=2×=,
由勾股定理得:DM===.
【题目】为了迎接疫情彻底结束后的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表
运动鞋价格 | 甲 | 乙 |
进价(元/双) | ||
售价(元/双) |
已知:用元购进甲种运动鞋的数量与用元购进乙种运动鞋的数量相同.
求的值;
要使购进的甲、乙两种运动鞋共双的总利润(利润售价进价)不少于元,且甲种运动鞋的数量不超过双,问该专卖店共有几种进货方案;
在的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?