题目内容
【题目】为了迎接疫情彻底结束后的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表
运动鞋价格 | 甲 | 乙 |
进价(元/双) | ||
售价(元/双) |
已知:用元购进甲种运动鞋的数量与用元购进乙种运动鞋的数量相同.
求的值;
要使购进的甲、乙两种运动鞋共双的总利润(利润售价进价)不少于元,且甲种运动鞋的数量不超过双,问该专卖店共有几种进货方案;
在的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
【答案】(1);(2)共有种方案;(3)此时应购进甲种运动鞋双,购进乙种运动鞋双
【解析】
(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;
(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200-x)双,然后根据总利润列出一元一次不等式组,求出不等式组的解集后,再根据鞋的双数是正整数解答;
(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
解:依题意得,
整理得,
解得
经检验,是原分式方程的解,
所以,;
设购进甲种运动鞋双,则乙种运动鞋双,
根据题意得,,
解得
是正整数,
共有种方案;
设总利润为
则
当时,随的增大而减小,
所以,当时,有最大值,
即此时应购进甲种运动鞋双,购进乙种运动鞋双.
【题目】为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):
组别 | 分数 | 人数 |
第1组 | 90<x≤100 | 8 |
第2组 | 80<x≤90 | a |
第3组 | 70<x≤80 | 10 |
第4组 | 60<x≤70 | b |
第5组 | 50<x≤60 | 3 |
请根据以上信息,解答下列问题:
(1)求出a,b的值;
(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;
(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?