题目内容
【题目】抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
【答案】(1)y=﹣x2+2x+3;(2)当a=时,△BDC的面积最大,此时P(, );(3)m的变化范围为:﹣≤m≤5
【解析】试题分析:
解:
(1)由题意得:,解得: ,
∴抛物线解析式为;
(2)令,
∴x1= -1,x2=3,即B(3,0),
设直线BC的解析式为y=kx+b′,
∴,解得: ,
∴直线BC的解析式为,
设P(a,3-a),则D(a,-a2+2a+3),
∴PD=(-a2+2a+3)-(3-a)=-a2+3a,
∴S△BDC=S△PDC+S△PDB
,
∴当时,△BDC的面积最大,此时P(, );
(3)由(1),y=-x2+2x+3=-(x-1)2+4,
∴OF=1,EF=4,OC=3,
过C作CH⊥EF于H点,则CH=EH=1,
当M在EF左侧时,
∵∠MNC=90°,
则△MNF∽△NCH,
∴,
设FN=n,则NH=3-n,
∴,
即n2-3n-m+1=0,
关于n的方程有解,△=(-3)2-4(-m+1)≥0,
得m≥,
当M在EF右侧时,Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°,
作EM⊥CE交x轴于点M,则∠FEM=45°,
∵FM=EF=4,
∴OM=5,
即N为点E时,OM=5,
∴m≤5,
综上,m的变化范围为: ≤m≤5.
【题目】某甜品店用 A,B 两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如下表所示.该店制作甲款甜品 x 份,乙款甜品 y 份,共用去A 原料 2000 克.
原料 款式 | A 原料(克) | B 原料(克) |
甲款甜品 | 30 | 15 |
乙款甜品 | 10 | 20 |
(1)求 y 关于 x 的函数表达式.
(2)已知每份甲甜品的利润为 a 元(a 正整数), 每份乙甜品的利润为 2 元. 假设两款甜品均能全部卖出.
①当 a=3 时,若获得总利润不少于 220 元,则至少要用去 B 原料多少克?
②现有 B 原料 3100 克,要使获利为 450 元且尽量不浪费原材料,甲甜品的每份利润应定为多元?