题目内容
【题目】某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.
(1)求y与x之间的函数关系式;
(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?
【答案】(1)y=﹣10x+450;(2)售价为28元时,每天获利最大为2210元
【解析】试题分析:(1)、首先求出当x=25时的销售量,然后设函数解析式为:y=kx+b,将(20,250)和(25,200)代入求出函数解析式;(2)、设获利为W,然后根据总利润=单件利润×数量列出函数关系式,然后根据二次函数的性质求出最大值,得出答案.
试题解析:(1)、当x=25时,y=2000÷(25﹣15)=200(千克),
设y与x的函数关系式为:y=kx+b,把(20,250),(25,200)代入得: ,解得: , ∴y与x的函数关系式为:y=﹣10x+450;
(2)、设每天获利W元,
W=(x﹣15)(﹣10x+450)=﹣10x2+600x﹣6750=﹣10(x﹣30)2+2250,
∵a=﹣10<0, ∴开口向下, ∵对称轴为x=30,
∴在x≤28时,W随x的增大而增大, ∴x=28时,W最大值=13×170=2210(元),
答:售价为28元时,每天获利最大为2210元.
【题目】第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图如下:
甲校学生样本成绩频数分布表
成绩m(分) | 频数(人数) | 频率 |
1 | 0.05 | |
c | 0.10 | |
3 | 0.15 | |
a | b | |
6 | 0.30 | |
合计 | 20 | 1.0 |
表1
图1
b.甲校成绩在的这一组的具体成绩是:81 81 89 83 89 82 83 89
c.甲、乙两校成绩的平均分、中位数、众数、方差如下:
学校 | 平均分 | 中位数 | 众数 | 方差 |
甲 | 84 | n | 89 | 129.7 |
乙 | 84.2 | 85 | 85 | 138.6 |
表2
根据以上图表提供的信息,解答下列问题:
(1)表1中a=______;表2中的中位数n =_______;
(2)补全图1甲校学生样本成绩频数分布直方图;
(3)在此次测试中,某学生的成绩是84分,在他所属学校排在前10名,由表中数据可知该学生是______校的学生(填“甲”或“乙”),理由是________;
(4)假设甲校1000名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为_______人.