题目内容
【题目】如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.
【答案】
【解析】
根据ABCD是菱形,找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,根据勾股定理求出即可.
解:如图,连接DE交AC于点P,连接DB,
∵四边形ABCD是菱形,
∴点B、D关于AC对称(菱形的对角线相互垂直平分),
∴DP=BP,
∴PB+PE的最小值即是DP+PE的最小值(等量替换),
又∵ 两点之间线段最短,
∴DP+PE的最小值的最小值是DE,
又∵,CD=CB,
∴△CDB是等边三角形,
又∵点E为BC边的中点,
∴DE⊥BC(等腰三角形三线合一性质),
菱形ABCD的边长为2,
∴CD=2,CE=1,
由勾股定理得,
故答案为.
练习册系列答案
相关题目
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.