题目内容
【题目】第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图如下:
甲校学生样本成绩频数分布表
成绩m(分) | 频数(人数) | 频率 |
1 | 0.05 | |
c | 0.10 | |
3 | 0.15 | |
a | b | |
6 | 0.30 | |
合计 | 20 | 1.0 |
表1
图1
b.甲校成绩在的这一组的具体成绩是:81 81 89 83 89 82 83 89
c.甲、乙两校成绩的平均分、中位数、众数、方差如下:
学校 | 平均分 | 中位数 | 众数 | 方差 |
甲 | 84 | n | 89 | 129.7 |
乙 | 84.2 | 85 | 85 | 138.6 |
表2
根据以上图表提供的信息,解答下列问题:
(1)表1中a=______;表2中的中位数n =_______;
(2)补全图1甲校学生样本成绩频数分布直方图;
(3)在此次测试中,某学生的成绩是84分,在他所属学校排在前10名,由表中数据可知该学生是______校的学生(填“甲”或“乙”),理由是________;
(4)假设甲校1000名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为_______人.
【答案】(1)8,83;(2)见详解;(3)甲,83<84<85,不是乙校学生是甲校学生;(4)1400
【解析】
(1)根据频数分布表和频数分布直方图的信息列式计算即可得到c的值,进而求出a,根据中位数的定义求解可得n的值;
(2)根据题意补全频数分布直方图即可;
(3)根据这名学生的成绩为84分,大于甲校样本数据的中位数83分,小于乙校样本数据的中位数85分可得;
(4)利用样本估计总体思想求解可得.
解:(1)∵c=20×0.10=2,
∴a=20-1-2-3-6=8
由频数分布表和频率分布直方图中的信息可知,排在中间位置的两个数是83和83,
∴n=(83+83) ÷2=83
故答案为:8,83
(2)补全图1甲校学生样本成绩频数分布直方图如图所示:
(3)在此次测试中,某学生的成绩是84分,在他所属学校排在前10名,由表中数据可知该学生是甲校的学生;
理由:甲校的中位数是83, 乙校的中位数85,而83<84<85,所以不是乙校学生
故答案为:甲校学生;
(4)甲校成绩80分以上的人数为:(人)
故甲校成绩优秀的人数为1400人.
故答案为:1400
【题目】某公司为了更好治理污水质,改善环境,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
A型 | B型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 200 | 160 |
经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少1万元.
(1)求a,b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过78万元,你认为该公司有哪几种购买方案;
(3)在(2)间的条件下,若每月要求处理的污水量不低于1620吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
【题目】某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表单位:环:
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | |
甲 | 10 | 9 | 8 | 8 | 10 | 9 |
乙 | 10 | 10 | 8 | 10 | 7 | 9 |
根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.
(1)分别计算甲、乙六次测试成绩的方差;
(2)根据数据分析的知识,你认为选______名队员参赛.