题目内容
【题目】如图,OA、OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连接AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=6.
(1)求证:∠ECD=∠EDC;
(2)若BC=2OC,求DE长;
(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.
【答案】(1)证明见解析;(2)8;(3) .
【解析】
(1)连接OD,由切线的性质得出∠EDC+∠ODA=90°,由等腰三角形的性质得出∠ODA=∠OAC,得出∠EDC=∠ACO,即可得出结论;
(2)设DE=x,则CE=DE=x,OE=2+x,在Rt△ODE中,由勾股定理得出方程,解法长即可;
(3)过点D作DF⊥AO交AO的延长线于F,当∠A=15°时,∠DOF=30°,得出DF=OD=OA=3,∠DOA=150°,S弓形ABD=S扇形ODA-S△AOD=15π-9,当∠A=30°时,∠DOF=60°,S弓形ABD=S扇形ODA-S△AOD=12π-9,即可得出结果.
(1)证明:连接OD,如图1所示:
∵DE是⊙O的切线,
∴∠EDC+∠ODA=90°,
∵OA⊥OB,
∴∠ACO+∠OAC=90°,
∵OA、OB是⊙O的两条半径,
∴OA=OB,
∴∠ODA=∠OAC,
∴∠EDC=∠ACO,
∵∠ECD=∠ACO,
∴∠ECD=∠EDC;
(2)∵BC=2OC,OB=OA=6,
∴OC=2,
设DE=x,
∵∠ECD=∠EDC,
∴CE=DE=x,
∴OE=2+x,
∵∠ODE=90°,
∴OD2+DE2=OE2,
即:62+x2=(2+x)2,
解得:x=8,
∴DE=8;
(3)解:过点D作DF⊥AO交AO的延长线于F,如图2所示:
当∠A=15°时,∠DOF=30°,
∴DF=OD=OA=3,∠DOA=150°,
S弓形ABD=S扇形ODA﹣S△AOD=﹣OADF=15π﹣×6×3=15π﹣9,
当∠A=30°时,∠DOF=60°,
∴DF=OD=OA=3,∠DOA=120°,
S弓形ABD=S扇形ODA﹣S△AOD=﹣OADF=12π﹣×6×3=12π﹣9,
∴当∠A从15°增大到30°的过程中,AD在圆内扫过的面积=(15π﹣9)﹣(12π﹣9)=3π+9﹣9.