题目内容
【题目】如图1,点P为△ABC边上一动点,沿着A→C→B的路径行进,点P作PD⊥AB,垂足为D,设AD=x,△APD的面积为y,图2是y关于x的函数图象,则依据图中的数量关系计算△ACB的周长为( )
A.B.15C.
D.
【答案】C
【解析】
根据函数图象得出拐点处坐标为(4,6),结合图3得出当点P运动到C点时,y有最大值6,从而计算出CD的值,勾股定理求出AC,根据当点D运动到B点时,函数值为0,求出AB的值,从而求出BD的值,利用锐角三角函数求出BC即可解答.
由图像可知函数图像的拐点处坐标为(4,6),
结合图3可知,当点P运动到C点时,y有最大值6,
可知:y=AD·CD,代入数据得CD=3,
在Rt△ADC中,AC==5,
当点D运动到B点时,函数值为0,故AB=,
∴BD=4+-4=
,
在Rt△BDC中,CD=3,BD=,tanB=
,
得∠B=60°,由BD=BC·cos60°,得BC=,
∴△ABC的周长为:5++4 +
=
.
故选:C.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某校为了了解学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成下面的统计图表:
组别 | A | B | C | D | E |
身高(cm) | x<150 | 150≤x<155 | 155≤x<160 | 160≤x<165 | x≥165 |
根据图表中信息,回答下列问题:
(1)在样本中,男生身高的中位数落在 组(填组别序号),女生身高在B组的人数有 人;
(2)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生约有多少人?
(3)从男生样本的A、B两组里,随机安排2人参加一项活动,求恰好是1人在A组、1人在B组的概率.
【题目】复课返校后,为了让同学们进一步了解“新型冠状病毒”的防控知识,某学校组织了一次关于“新型冠状病毒”的防控知识比赛,从问卷中随机抽查了一部分,对调查结果进行了分组统计,并制作了如下表格与条形统计图:
分组结果 | 频数 | 频率 |
A.完全掌握 | 30 | 0.3 |
B.比较清楚 | 50 | |
C.不怎么清楚 | 0.15 | |
D.不清楚 | 5 | 0.05 |
请根据上图完成下面题目:
(1)总人数为 人, ,
;
(2)请你补全条形统计图;
(3)若全校有2700人,请你估算一下全校对“新型冠状病毒”的防控知识“完全掌握”的人数有多少.
【题目】对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间是一次函数关系.如图所示是一个家用温度表的表盘、其左边为摄氏温度的刻度和读数(单位),右边为华氏温度的刻度和读数(单位
).从温度计的刻度上可以看出,摄氏温度
与华氏温度
部分对应关系如下表:
··· | ··· | |||
··· | ··· |
(1)求与
之间的函数关系式;
(2)当摄氏温度为零下时,求华氏温度为多少?