题目内容

【题目】如图,已知RtABC,C=90°.

(1)求作:ABC的内切圆⊙O;(尺规作图,不写作法,保留痕迹)

(2)在(1)中,∠AOB的度数为   

【答案】(1)见解析;(2) 135°.

【解析】分析:(1)首先由三角形的内心是三角形三个角平分线的交点,确定圆心,然后作边的垂线,确定半径,继而可求得△ABC的内切圆

(2)根据三角形的内心是三角形三个角平分线的交点,由角平分线的性质和三角形的内角和求解..

详解:解:(1)如图,⊙O为所作;

(2)∵点O为△ABC的内心,

∴OB平分∠ABC,OA平分∠BAC,

∴∠OBA=∠ABC,∠OAB=∠BAC,

∴∠OBA+∠OAB=(∠ABC+∠BAC)=×90°=45°,

∴∠AOB=180°﹣45°=135°.

故答案为135°.

练习册系列答案
相关题目

【题目】[ 问题提出 ]

一个边长为 ncm(n3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?

[ 问题探究 ]

我们先从特殊的情况入手

1)当n=3时,如图(1

没有涂色的:把这个正方形的表层剥去剩下的正方体,有1×1×1=1个小正方体;

一面涂色的:在面上,每个面上有1个,共有6个;

两面涂色的:在棱上,每个棱上有1个,共有12个;

三面涂色的:在顶点处,每个顶点处有1个,共有8个.

2)当n=4时,如图(2

没有涂色的:把这个正方形的表层剥去剩下的正方体,有2×2×2=8个小正方体:

一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个;

两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个;

三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有

[ 问题解决 ]

一个边长为ncm(n3)的正方体木块,没有涂色的:把这个正方形的表层剥去剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

[ 问题应用 ]

一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网