题目内容
【题目】直线y=﹣x+2与x轴、y轴分别交于点A、点C,抛物线经过点A、点C,且与x轴的另一个交点为B(﹣1,0).
(1)求抛物线的解析式;
(2)点D为第一象限内抛物线上的一动点.
①如图1,若CD=AD,求点D的坐标;
②如图2,BD与AC交于点E,求S△CDE:S△CBE的最大值.
【答案】(1)y=﹣x2+x+2;(2)①D(,);②S△CDE:S△CBE的最大值为.
【解析】分析:(1)先求出A、C的坐标,再利用待定系数法求出函数的解析式;
(2)①根据等腰直角三角形的性质,确定点D的在y=x上,设出点D的坐标,代入y=﹣x2+x+2即可得到函数的解析式;
②作DF∥y轴交AC于F,BG∥y轴交直线AC于G,证得△DEF∽△BEG,然后根据相似三角形的面积比与相似比的关系,设出D点的坐标(t,﹣t2+t+2),再根据相似比的性质和二次函数的最值求解即可.
详解:(1)当x=0时,y=﹣x+2=2,则C(0,2),
当y=0时,﹣x+2=0,解得x=2,则A(2,0),
设抛物线解析式为y=a(x+1)(x﹣2),
把C(0,2)代入得a1(﹣2)=2,解得a=﹣1,
∴抛物线解析式为y=﹣(x+1)(x﹣2),
即y=﹣x2+x+2;
(2)①∵OA=OC,
∴△OAC为等腰直角三角形,
∵DC=DA,
∴点D在AC的垂直平分线上,
即点D在直线y=x上,
设D(m,m)(m>0),
把D(m,m)代入y=﹣x2+x+2得﹣m2+m+2=m,解得m1=,m2=﹣(舍去),
∴点D的坐标为(,);
②作DF∥y轴交AC于F,BG∥y轴交直线AC于G,如图2,
∵DF∥BG,
∴△DEF∽△BEG,
∴=,
∵S△CDE:S△CBE=,
∴S△CDE:S△CBE=,
当x=﹣1时,y=﹣x+2=3,则G(﹣1,3),
设D(t,﹣t2+t+2)(0<t<2),则F(t,﹣t+2),
∴DF=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,
∴S△CDE:S△CBE===﹣(t﹣1)2+,
∴当t=1时,S△CDE:S△CBE的最大值为.