题目内容
【题目】已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为( )
A. (0,0) B. (1,) C. (,) D. (,)
【答案】D
【解析】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.
∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短.在RT△AOG中,AG===,∴AC=.∵OABK=ACOB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为,直线AD解析式为,由,解得:,∴点P坐标(,).故选D.
练习册系列答案
相关题目