题目内容
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),与y轴的交点为C,已知﹣2≤c≤﹣1,顶点坐标为(1,n),则下列结论正确的是( )
A.a+b>0
B.
C.对于任意实数m,不等式a+b>am2+bm恒成立
D.关于x的方程ax2+bx+c=n+1没有实数根
【答案】B
【解析】
A、由抛物线的顶点坐标代入可得a+b=n﹣c,由最小值为n可知c>n,可得结论A错误;
B、利用对称轴可得b=﹣2a,结合点A的坐标,可得c=﹣3a,代入已知中c的不等式中,可判定结论B正确;
C、由抛物线的顶点坐标及a>0,可得出n=a+b+c,且n≤ax2+bx+c,进而可得出对于任意实数m,a+b≤am2+bm总成立,结论C错误;
D、由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线上移可得出抛物线y=ax2+bx+c与直线y=n+1有两个交点,进而可得出关于x的方程ax2+bx+c=n+1有两个不相等的实数根.
解:A、∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴a+b+c=n,
∴a+b=n﹣c,
由图象可知:抛物线开口向上,有最小值是n,
∴n<c,
∴a+b=n﹣c<0,结论A错误;
②∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴﹣=1,
∴b=﹣2a,
∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),
∴a﹣b+c=3a+c=0,
∴c=﹣3a
∵﹣2≤c≤﹣1,
∴﹣2≤﹣3a≤﹣1,
∴,结论B正确;
③∵a>0,顶点坐标为(1,n),
∴n=a+b+c,且n≤ax2+bx+c,
∴对于任意实数m,a+b≤am2+bm总成立,结论C错误;
④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
∵抛物线开口向上,
∴抛物线y=ax2+bx+c与直线y=n+1有两个交点,
∴关于x的方程ax2+bx+c=n+1有两个不相等的实数根,结论D错误.
故选:B.
【题目】某校为了解学生零用钱支出情况,从七、八、九年级800名学生中随机抽取部分学生,对他们今年5月份的零用钱支出情况进行调查统计,并绘制成如下统计图表:
组别 | 零用钱支出x(单位:元) | 频数(人数) | 频率 | |
节俭型 | 一 | x<20 | m | 0.05 |
二 | 20≤x<30 | 4 | a | |
富足型 | 三 | 30≤x<40 | n | 0.45 |
四 | 40≤x<50 | 12 | b | |
奢侈型 | 五 | x≥50 | 4 | c |
合计 | 1 |
(1)表中a+b+c= ;m= ;本次调查共随机抽取了 名同学;
(2)在扇形统计图中,“富足型”对应的扇形的圆心角的度数是 ;
(3)估计今年5月份全校零花钱支出在30≤x<40范围内的学生人数;
(4)在抽样的“奢侈型”学生中,有2名女生和2名男生.学校团委计划从中随机抽取2名同学参加“绿苗理财计划”活动,请运用树状图或者列表说明恰好抽到一男一女的概率.