题目内容
【题目】在平面直角坐标系中,直线1垂直于x轴,垂足为M(m,0),点A(﹣1.0)关于直线的对称点为A′.
探究:(1)当m=0时,A′的坐标为 ;
(2)当m=1时,A′的坐标为 ;
(3)当m=2时,A′的坐标为 ;
发现:对于任意的m,A′的坐标为 .
解决问题:若A(﹣1,0)B(﹣5,0),C(6,0),D(15,0),将线段AB沿直线l翻折得到线段A′B′,若线段A′B′与线段CD重合部分的长为2,求m的值.
【答案】(1)(1,0);(2)(3,0);(3)(5,0);发现:(2m+1,0);解决问题:m的值为或6.
【解析】
探究:由对称可知M为线段AA′的中点,则可知AM=MA′,则可得到A′点的坐标;
发现:利用探究中的规律可用m表示出A′的坐标;
解决问题:利用m可分别表示出A′、B′的坐标,则重合部分可能为B′C或A′D,由坐标可表示出其长度,则可得到关于m的方程,可求得m的值.
(1)当m=0时,t=1,则A'的坐标为 (1,0),
故答案为:(1,0);
(2)当m=1时,t=2×1+1=3,则A'的坐标为(3,0),
故答案为:(3,0);
(3)当m=2时,t=2×2+1=5,则A'的坐标为(5,0),
故答案为:(5,0);
发现:由探究可知,对于任意的m,t=2m+1,则A'的坐标为(2m+1,0),
故答案为:(2m+1,0);
解决问题:∵A(﹣1,0)B(﹣5,0),
∴A′(2m+1,0),B′(2m+5,0),
当B′在点C、D之间时,则重合部分为线段CB′,且C(6,0),
∴2m+5﹣6=2,解得m=;
当A′在点C、D之间时,则重合部分为线段A′D,且D(15,0),
∴15﹣(2m+1)=2,解得m=6;
综上可知m的值为或6.
【题目】(本题12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为(米),与桌面的高度为(米),运行时间为(秒),经多次测试后,得到如下部分数据:
(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0. 8 | … |
(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
(1)当为何值时,乒乓球达到最大高度?
(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,与满足
①用含的代数式表示;
②球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求的值.